Perturbed Frame Sequences: Canonical Dual Systems, Approximate Reconstructions and Applications
نویسندگان
چکیده
We consider perturbation of frames and frame sequences in a Hilbert space H. It is known that small perturbations of a frame give rise to another frame. We show that the canonical dual of the perturbed sequence is a perturbation of the canonical dual of the original one and estimate the error in the approximation of functions belonging to the perturbed space. We then construct perturbations of irregular translates of a bandlimited function in L2(Rd). We give conditions for the perturbed sequence to inherit the property of being Riesz or frame sequence. For this case we again calculate the error in the approximation of functions that belong to the perturbed space and compare it with our previous estimation error for general Hilbert spaces.
منابع مشابه
Duality of $g$-Bessel sequences and some results about RIP $g$-frames
In this paper, first we develop the duality concept for $g$-Bessel sequences and Bessel fusion sequences in Hilbert spaces. We obtain some results about dual, pseudo-dual and approximate dual of frames and fusion frames. We also expand every $g$-Bessel sequence to a frame by summing some elements. We define the restricted isometry property for $g$-frames and generalize some resu...
متن کاملCyclic wavelet systems in prime dimensional linear vector spaces
Finite affine groups are given by groups of translations and di- lations on finite cyclic groups. For cyclic groups of prime order we develop a time-scale (wavelet) analysis and show that for a large class of non-zero window signals/vectors, the generated full cyclic wavelet system constitutes a frame whose canonical dual is a cyclic wavelet frame.
متن کاملc-Frames and c-Bessel mappings
The theory of c-frames and c-Bessel mappings are the generalizationsof the theory of frames and Bessel sequences. In this paper, weobtain several equivalent conditions for dual of c-Bessel mappings.We show that for a c-Bessel mapping $f$, a retrievalformula with respect to a c-Bessel mapping $g$ is satisfied if andonly if $g$ is sum of the canonical dual of $f$ with a c-Besselmapping which wea...
متن کاملExpansion of Bessel and g-Bessel sequences to dual frames and dual g-frames
In this paper we study the duality of Bessel and g-Bessel sequences in Hilbert spaces. We show that a Bessel sequence is an inner summand of a frame and the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame. Next we develop this results to the g-frame situation.
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJWMIP
دوره 12 شماره
صفحات -
تاریخ انتشار 2014